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An essential role for a CD36-related receptor in
pheromone detection in Drosophila
Richard Benton1{, Kirsten S. Vannice1{ & Leslie B. Vosshall1

The CD36 family of transmembrane receptors is present across
metazoans and has been implicated biochemically in lipid binding
and transport1. Several CD36 proteins function in the immune
system as scavenger receptors for bacterial pathogens and seem
to act as cofactors for Toll-like receptors by facilitating recog-
nition of bacterially derived lipids2–4. Here we show that a
Drosophila melanogaster CD36 homologue, Sensory neuron mem-
brane protein (SNMP), is expressed in a population of olfactory
sensory neurons (OSNs) implicated in pheromone detection.
SNMP is essential for the electrophysiological responses of OSNs
expressing the receptor OR67d to (Z)-11-octadecenyl acetate
(cis-vaccenyl acetate, cVA), a volatile male-specific fatty-acid-
derived pheromone that regulates sexual and social aggregation
behaviours5–8. SNMP is also required for the activation of the moth
pheromone receptor HR13 by its lipid-derived pheromone ligand
(Z)-11-hexadecenal9, but is dispensable for the responses of the
conventional odorant receptor OR22a to its short hydrocarbon
fruit ester ligands. Finally, we show that SNMP is required for
responses of OR67d to cVA when ectopically expressed in OSNs
not normally activated by pheromones. Because mammalian
CD36 binds fatty acids10, we suggest that SNMP acts in concert
with odorant receptors to capture pheromone molecules on the
surface of olfactory dendrites. Our work identifies an unantici-
pated cofactor for odorant receptors that is likely to have a wide-
spread role in insect pheromone detection. Moreover, these results

define a unifying model for CD36 function, coupling recognition
of lipid-based extracellular ligands to signalling receptors in both
pheromonal communication and pathogen recognition through
the innate immune system.

Insect odorant receptors represent a novel class of polytopic
membrane proteins unrelated to vertebrate G-protein-coupled che-
mosensory receptors11,12. The functional insect odorant receptor is a
heteromer of a ligand-binding subunit and the highly conserved
OR83b co-receptor, which mediates transport to sensory cilia11,13–15.
Little is known about how this complex recognizes odours and
evokes neuronal depolarization. To isolate novel components
involved in insect olfactory detection, we used a bioinformatic
approach to identify molecules that exhibit the same insect-specific
orthology and olfactory-specific tissue expression as these receptors
(Fig. 1). Two-thousand one-hundred and thirty-five Drosophila
genes with insect-specific orthologues were identified by comparing
the fruit fly (Drosophila melanogaster), mosquito (Anopheles gam-
biae) and eight non-insect genomes using the OrthoMCL algorithm
(Fig. 1a)16. Broadly expressed genes were excluded by selecting only
the 616 genes with fewer than two expressed sequence tags. We
recovered all classes of known insect chemosensory genes, including
odorant receptors, gustatory receptors, odorant and other chemo-
sensory binding proteins, and putative odour-degrading enzymes
(Fig. 1b and Supplementary Table 1). The remaining genes were
classified on the basis of predicted protein domains (Fig. 1b and
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Figure 1 | A comparative genomics screen for olfactory molecules
identifies Drosophila SNMP, a CD36-related receptor. a, Summary of
bioinformatic screen. EST, expressed sequence tag. b, Pie chart of putative
functions of genes retrieved from the screen. c, RT–PCR of Snmp

homologues in Drosophila and Anopheles. Control RT–PCR products: Cam
(Drosophila) and rps7 (Anopheles). d, Phylogenetic tree of insect SNMPs and
related Drosophila and mammalian CD36 proteins. Values are uncorrected
(‘p’) distance.
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Supplementary Table 1) and included many implicated in immunity
and defence.

Three-hundred and thirty-nine uncharacterized genes were
screened for selective expression in the antenna—the major olfactory
organ of Drosophila—by reverse transcriptase–polymerase chain
reaction (RT–PCR). Of these, we focus here on Snmp, an antennal-
enriched gene related to the CD36 receptor family (Fig. 1c). The
Anopheles homologue of Snmp was also antennal-specific (Fig. 1c),
consistent with the previously described olfactory-specific expression
pattern of the silk moth (Antheraea polyphemus) homologue Snmp-1
(ref. 17). SNMPs form an insect-specific sub-group of the CD36
family (Fig. 1d), explaining how Drosophila Snmp emerged from
our bioinformatic screen.

In the antenna, Snmp was found prominently expressed in a lat-
eral-distal population of OSNs that co-express Or83b (Fig. 2b)11,13–15,
in non-neuronal support cells that surround these OSNs, and in
support cells elsewhere in the antenna and chemosensory organs
on the proboscis (Fig. 2b, and data not shown). Genetic labelling
of SNMP-expressing OSNs with mouse CD8 fused to green fluor-
escent protein (CD8–GFP) revealed that these neurons target nine
glomeruli in the antennal lobe (Fig. 2c)18,19—DA1, VA1d, VA1l/m,
DL3, DA4m, DA4l, DA2, DC3 and DC1—corresponding to those
innervated by OSNs of the trichoid sensilla, which are involved in
pheromone detection20,21.

Using a peptide antibody, SNMP was found concentrated in tri-
choid sensory cilia, where it co-localized with OR83b (Fig. 2d), but
only at very low levels in the cell bodies and axons (Fig. 2d, and data
not shown), similar to moth SNMP-1 (ref. 17). We did not observe
SNMP in non-trichoid OSNs, but it was expressed in support cells

throughout the antenna (Fig. 2d). All anti-SNMP immunoreactivity
was abolished in an snmp-null mutant (see below), confirming anti-
body specificity. Although the localization of SNMP in OSN cilia was
similar to that of odorant receptors, it did not depend on OR83b
when we expressed a functional SNMP–GFP fusion protein in OSNs
innervating basiconic sensilla (Fig. 2e, and Supplementary Fig. 1).
Therefore, SNMP ciliary trafficking is independent of both specific
ligand-binding odorant receptors and OR83b. We examined whether
SNMP might still contact odorant receptors in trichoid cilia by using
the fluorescent protein fragment complementation assay11. We gen-
erated and functionally verified SNMP and OR83b bearing comple-
mentary fragments of a yellow fluorescent protein (YFP) reporter
(Fig. 2f and Supplementary Fig. 1). Reconstitution of the fluorescent
YFP signal in sensory cilia was only observed when both fusion pro-
teins were expressed (Fig. 2f). As the YFP fragments do not self-
associate, this reconstitution could only result if SNMP and OR83b
were brought into close proximity (,80 Å), providing evidence that
SNMP is closely apposed to, although not necessarily directly inter-
acting with, odorant receptors in the sensory compartment.

We generated null mutants in Snmp by gene targeting22 (Fig. 3a–d).
snmp mutants are viable and fertile with no gross morphological or
locomotor defects. We examined the function of SNMP in the sub-
population of trichoid sensilla innervated by neurons expressing
OR67d—the best-characterized Drosophila pheromone receptor that
recognizes cVA8,21,23. In snmp mutants, neither the expression of Or67d
nor the ciliary localization of GFP–OR67d or OR83b was affected
(Fig. 3c, e) and axonal projections of snmp mutant OR67d-expressing
neurons to the antennal lobe were wild type (Fig. 3f). The expression
of LUSH, an odorant-binding protein secreted by trichoid sensilla
support cells into the lymph6 was normal (Fig. 3g). Thus Snmp is
dispensable for the development of trichoid OSNs and support cells.

We investigated whether the responses of OR67d neurons to
cVA stimulation were altered in snmp mutants. The relatively low
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spontaneous activity of the OR67d neuron was observable as a
sparse distribution of action potentials of uniform amplitude
(Fig. 4a). On stimulation with cVA, wild-type neurons responded
with a robust train of action potentials in a dose-dependent manner
(Fig. 4a, b). snmp mutant neurons displayed no cVA-evoked electro-
physiological responses at any concentration tested (Fig. 4a, b), but
showed an increase in spontaneous activity (Fig. 4a). Both spontan-
eous and stimulus-evoked responses were fully restored by expres-
sion of the Snmp rescuing transgene in OR67d-expressing neurons
(Fig. 4a, b, and Supplementary Fig. 2), but not by expression in
support cells surrounding these neurons (Fig. 4a, b, and Supplemen-
tary Fig. 2). Expression of a distinct Drosophila CD36-related protein,
NINAD, in OR67d-expressing neurons did not rescue electrophysio-
logical defects of snmp mutants (data not shown). Thus, SNMP has
an essential, cell-autonomous and specific function in OR67d-
expressing neurons in mediating responses to cVA.

cVA detection is also dependent on LUSH and the OR67d/OR83b
heteromeric receptor complex6,8,23 (data not shown), suggesting that
SNMP acts with these proteins in a signalling pathway. In contrast
to snmp mutants, however, loss of lush, Or67d or Or83b severely
decreased spontaneous activity of these neurons (Fig. 4c, d)6,8.
Double-mutant analysis of this spontaneous activity phenotype
revealed that Snmp is epistatic to lush, because OR67d-expressing
neurons retained high levels of spontaneous activity in animals lack-
ing both SNMP and LUSH (Fig. 4c, d). In contrast, snmp Or83b
double mutants were, like Or83b, electrically silent (Fig. 4c, d).
Although the mechanism by which spontaneous activity is regulated
in Drosophila OSNs is unknown, our genetic analysis indicates that
SNMP may act downstream of LUSH and upstream of, or in parallel
with, odorant receptors in the generation of action potentials.

To investigate the specificity of SNMP function, we ectopically
expressed in OR67d neurons a second receptor, OR22a, which is
responsive to fruit esters, such as ethyl butyrate and pentyl acetate24.
Although chemically related to cVA, OR22a ligands lack the long
hydrophobic tail of this fatty-acid-derived pheromone (Fig. 5a).
Ectopic expression of OR22a in wild-type OR67d-expressing
neurons conferred responses to a panel of known OR22a ligands in
addition to the endogenous cVA response (Fig. 5a, b), but not to a
control odour, geranyl acetate, which activates neither OR67d nor
OR22a (ref. 25). In snmp mutants, ectopic OR22a-dependent res-
ponses were unaffected, but all cVA responses were lost (Fig. 5a, b).
The broad expression of SNMP in trichoid OSNs indicates that
it might have a general function in pheromone detection. Because
no other volatile pheromones have been identified in Drosophila,
we tested whether SNMP is required for the activation of the
moth (Heliothis virescens) pheromone receptor HR13 by (Z)-11-
hexadecenal9, a component of the sex pheromone blend of this
species. As previously observed, expression of HR13 in OR67d-
expressing neurons conferred responsiveness to this pheromone8

(Fig. 5c, d). This response was almost completely abolished in snmp
mutants and restored by transgenic rescue of Snmp (Fig. 5c, d).
Together, these experiments reveal a specific and conserved function
for SNMP in mediating pheromone-evoked neuronal activity.
OR67d and HR13 share ,15% amino acid identity and their ligands
have chemically distinct head groups, suggesting that it is the fatty-
acid-derived hydrocarbon tail common to these pheromones that
necessitates SNMP.

Finally, we asked whether SNMP is required for the activation of
OR67d by cVA in neurons not normally responsive to pheromones.
We ectopically expressed OR67d in basiconic OSNs that lack the
endogenous OR22a ligand-binding odorant receptor, but retain
OR83b (ref. 24). All action potentials in these neurons can therefore
be ascribed to OR67d/OR83b activity. Or22a mutant neurons
expressing OR67d without SNMP exhibited spontaneous firing,
but did not respond to cVA (Fig. 5e, f). In contrast, when OR67d
was co-expressed with SNMP, significant responses to this phero-
mone were observed (Fig. 5e, f); compared to the responses of native
OR67d neurons, the frequency of action potentials was lower and
exhibited slower rise and decay rates (Fig. 5e, f). Such differences
may be due to the absence in basiconic sensilla of LUSH or odour-
degrading enzymes specialized to inactivate pheromone molecules26.

Through a bioinformatic screen for insect olfactory transduction
molecules, we have identified Drosophila SNMP as a CD36-related
receptor broadly expressed in pheromone-sensing neurons, which is
an essential co-factor for detection of the fatty-acid-derived phero-
mone cVA. As mammalian CD36 has an important biochemical
function in binding and membrane translocation of fatty acids we
suggest SNMP directly captures pheromone molecules on the surface
of OSN cilia—possibly retrieving them from odorant-binding pro-
teins in the extracellular milieu—and facilitates their transfer to the
odorant-receptor–OR83b complex (Fig. 5g). A recent study showed
OR67d ectopically expressed without SNMP could be activated by
cVA when the pheromone was directly applied to the sensillar cuticle
overlying the OSN21, indicating that pheromone receptors can be
directly stimulated by ligand. When pheromones are presented in
an air stream to the receptor in its native environment, however,
SNMP (and odorant-binding proteins6) are essential. We suggest
that the combination of molecular specializations of pheromone-
sensing trichoid neurons together contribute to the sensitivity of
these cells and that SNMP-related proteins function in the detection
of many insect pheromones.

The mechanistic basis of CD36 ligand interactions and signalling is
still poorly understood in any biological system. Our results have
three important general implications. First, we show that SNMP
has a specific role in the detection of fatty-acid-derived odour
ligands. Because other CD36-related receptors are involved in bind-
ing and transport of lipid-based molecules, for example in the
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mammalian intestine1, this protein family may represent specialized
receptors for extracellular fatty ligands of diverse biological origin
and function. Second, we show that SNMP acts in concert with other
transmembrane odorant receptors in OSN cilia in mediating phero-
mone-evoked activity. Because CD36 was previously shown to act as
a co-receptor for Toll-like receptors2, we suggest that CD36-related
proteins have obligate transmembrane partners in all their cellular
roles.

Finally, our results reveal a molecular parallel in the mechanisms of
intraspecific recognition through pheromone detection and patho-
gen recognition through the innate immune system (Fig. 5g). CD36
proteins in both invertebrates and vertebrates have been implicated
in the recognition of specific lipid-derived products from bacterial
cell walls, and coupling of this recognition through Toll-like recep-
tors to initiate the innate immune response2–4. Notably, mammalian
CD36 has been proposed as a candidate fat taste receptor27. Common
molecular recognition mechanisms in immune and chemosensory
systems may therefore be widespread.

METHODS SUMMARY
Bioinformatics. Insect-specific orthologues were identified using the OrthoMCL

server (http://orthomcl.cbil.upenn.edu/cgi-bin/OrthoMclWeb.cgi)16. Gene tar-

geting of Snmp was performed essentially as described13. Two null mutants, snmp1

and snmp2, arising from different starting insertions of the targeting construct

were analysed.

Histology and immunocytochemistry. Two-colour in situ RNA hybridization19

and immunofluorescence on antennal sections or whole-mount brains11,13 were

performed as described. A rabbit polyclonal antibody against SNMP was raised

against the synthetic peptide TNPATNPATHHKMEHRERY and affinity-

purified by Proteintech Group.

Electrophysiology and odorants. Extracellular recordings in single sensilla of

2–8-day-old flies were performed essentially as described13. High-purity odor-

ants were obtained from Sigma-Aldrich, except cVA (purity ,99%) obtained

from Pherobank.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Bioinformatics. Insect-specific orthologues were identified using the OrthoMCL

DB server (http://orthomcl.cbil.upenn.edu/cgi-bin/OrthoMclWeb.cgi)16, by

comparing the predicted complete proteomes (in April 2004) of Drosophila mel-

anogaster, Anopheles gambiae, Homo sapiens, Mus musculus, Caenorhabditis ele-

gans, Saccharomyces cerevisiae, Arabidopsis thaliana, Escherichia coli, Plasmodium

falciparum and Plasmodium yoelii. A supplementary data set of insect-specific

orthologues was obtained from the Anopheles gambiae genome-sequencing pro-

ject28. Expressed sequence tag numbers for the corresponding Drosophila genes

were downloaded from Flybase (http://flybase.bio.indiana.edu/) in June 2004.

Protein sequences were manually curated using BLAST (http://www.ncbi.nlm.

nih.gov/BLAST/) and SMART (http://smart.embl-heidelberg.de) servers. Snmp

was previously curated by Flybase/NCBI as CG7000-RA under accession number

NM_142696. The best-fit phylogenetic tree in Fig. 1d was generated using the

neighbour-joining algorithm in MacVector v9.0 with default parameters.

Molecular biology. Complementary DNA was synthesized from insect tissues

using the Absolutely RNA Microprep Kit (Stratagene) and Superscript First-

Strand Synthesis System (Invitrogen). Gene-specific primers for RT–PCR were

designed using Primer3 (ref. 29) to amplify ,500 bp spanning at least one

intron. All plasmid constructs were generated by amplification of the desired

cDNA or genomic fragments with primers containing flanking restriction sites

using the Expand High Fidelity PLUS PCR system (Roche) and Oregon-R anten-

nal or appendage cDNA or genomic DNA as templates. PCR products were T:A

cloned into pGEM-T Easy (Promega), sequenced and subcloned into appropri-

ate vectors as detailed below: Snmp-promoter-VP22–GAL4: the Snmp 5.412 kb

promoter region (nucleotides 16,998,115–16,992,704 in GenBank accession

AE014297) was subcloned into pVP22-GAL4 (ref. 30). lush-promoter-GAL4:

the lush 0.959 kb promoter region (nucleotides 19,599,310–19,598,352 in

GenBank accession AE014296) was subcloned into pCaSpeR-AUG-GAL4

(ref. 30). UAS-Snmp: full-length Snmp open reading frame (GenBank accession

NM_142696) was subcloned into pUAST (ref. 31). UAS-Snmp–GFP: full-length

Snmp open reading frame without termination codon was subcloned 59 of EGFP

(Clontech) in pUAST. UAS-Snmp–YFP(2): full-length Snmp open reading frame

without termination codon was subcloned upstream of DNA encoding a 10 ami-

no acid linker [(GGGGS)2] and a carboxy-terminal YFP fragment of YFP(2) in

pUAST (ref. 11). UAS-Or67d: full-length open reading frame of Or67d was

subcloned in pUAST. UAS-GFP–Or67d: full-length open reading frame of

Or67d was subcloned 39 of EGFP (without termination codon) in pUAST.

Snmp targeting construct: 59 and 39 homologous arms (16,998,850–16,993,851

and 16,991,435–16,986,436 of GenBank accession AE014297, respectively) were

subcloned to flank the white reporter gene in CMC105 (ref. 13). The gene

structure in Fig. 3a was generated using Genepalette v1.2 (ref. 32).

Insect strains. Drosophila stocks were maintained on conventional cornmeal-

agar-molasses medium under a 12 h light:12 h dark cycle at 25 uC. Wild-type

Berlin (M. Heisenberg) was used for electrophysiological experiments and the

wild-type Oregon-R strain was used for histology. Mutant alleles and transgenic

lines used: Or83b1, Or83b2 (ref. 13), lush1 (ref. 33), Or22a/bDhalo (ref. 24), Or67d-

GAL4 (ref. 19), Or83b-GAL4 (ref. 34), Or22a-GAL4 (ref. 19), UAS-YFP(1)–

Or83b (ref. 11), UAS-CD8–GFP (ref. 35), UAS-Or22a (ref. 13), UAS-HR13

(ref. 8), UAS-ninaD (ref. 36), 70FLP,70I-SceI/Cyo and 70FLP (ref. 37).

Specific genotypes of flies in the figures are listed below. Figure 2e: Or83b-GAL4/

UAS-Snmp–GFP;Or83b1/1 (left) Or83b-GAL4/UAS-Snmp–GFP;Or83b1/Or83b2

(right). Figure 2f: Or67d-GAL4,UAS-YFP(1)–Or83b/1 (left), Or67d-GAL4/UAS-

Snmp–YFP(2);snmp1/snmp2 (centre), Or67d-GAL4,UAS-YFP(1)–Or83b/UAS-

Snmp–YFP(2);snmp1,Or83b2/snmp2,Or83b1 (right). Figure 3e: Or67d-GAL4/

UAS-GFP–Or67d;snmp1/1 (top) Or67d-GAL4/UAS-GFP–Or67d;snmp1/snmp2

(bottom). Figure 3f: Or67d-GAL4/UAS-CD8–GFP;snmp1/1 (top) Or67d-GAL4/

UAS-CD8–GFP;snmp1/snmp2 (bottom). Figure 4a: Or67d-GAL4/1; snmp1/snmp2

(second trace) Or67d-GAL4/UAS-Snmp;snmp1/snmp2 (third trace) lush-GAL4/

UAS-Snmp;snmp1/snmp2 (bottom trace). Figure 4c: snmp1/snmp2 (second trace)

lush1/lush1 (third trace) lush1,snmp1/lush1,snmp2 (fourth trace) Or83b1/Or83b2

(fifth trace) snmp1,Or83b2/snmp2,Or83b1 (bottom trace). Figure 5a: Or67d-

GAL4/UAS-Or22a (middle) Or67d-GAL4/UAS-Or22a;snmp1/snmp2 (bottom).

Figure 5c: Or67d-GAL4/UAS-HR13 (second trace) Or67d-GAL4/UAS-HR13;

snmp1/snmp2 (third trace) Or67d-GAL4,UAS-Snmp/UAS-HR13;snmp1/snmp2

(bottom trace). Figure 5e: Or22a/bDhalo/Or22a/bDhalo;Or22a-GAL4,UAS-Or67d/

1 (top two traces) Or22a/bDhalo/Or22a/bDhalo;Or22a-GAL4,UAS-Or67d/UAS-

Snmp (bottom two traces).

Adult mosquitoes (Anopheles gambiae G3 strain; MRA-112) were obtained

from MR4 (www.mr4.org) through the Centers for Disease Control and

Prevention.

Gene targeting screen. Gene targeting of Snmp was performed essentially as

described13,38, using five independent insertions of the targeting construct.

From approximately 200,000 F2 progeny, at least 6 null mutants were obtained,

which were confirmed by PCR on genomic DNA preparations from homozygous

mutant animals amplifying fragments corresponding to 16,990,010–16,990,525

(59) 16,992,709–16,993,129 (Snmp) and 16,994,279–16,994,757 (39) in GenBank

accession AE014297. Two of these, snmp1 and snmp2, arising from different start-

ing insertions of the targeting construct, were retained for phenotypic analysis.

Histology and immunocytochemistry. Two-colour in situ RNA hybridization

was performed essentially as described19 using Or83b-FITC, Or67d-DIG, and

Snmp-DIG or -FITC RNA probes. Immunofluorescence on antennal sections

or whole-mount brains was performed as described11,13. Primary antibodies:

rabbit anti-OR83b EC2, 1:5,000 (ref. 13), rabbit anti-LUSH, 1:1,000 (ref. 33),

mouse monoclonal nc82, 1:10 (R. Stocker), rabbit anti-GFP, 1:1,000 (Molecular

Probes), mouse anti-GFP 1:500 (Molecular Probes). A rabbit polyclonal

antibody against SNMP was raised against the synthetic peptide

TNPATNPATHHKMEHRERY (corresponding to the C-terminal 19 amino

acids), affinity-purified by Proteintech Group and used at 1:1,000. Secondary

antibodies: Alexa488- and Cy3-conjugated anti-mouse IgG or anti-rabbit IgG

1:100 or 1:1,000 for whole-mount brains and antennal sections, respectively

(Molecular Probes; Jackson Immunoresearch). All microscopy was performed

using a Zeiss LSM 510 Laser Scanning Confocal Microscope. For the Protein

Fragment Complementation assay, the intrinsic fluorescence signal of reconsti-

tuted YFP was detected in fixed samples by excitation with an Argon Laser

(excitation wavelength 488 nm) and collection of the emitted light with Band

Pass filter 505–530.

Electrophysiology and odorants. Extracellular recordings in single sensilla of

2–8-day-old flies were performed essentially as described13,38,39. Ten microlitres

of odorant was added to a 6 mm filter paper disk (Whatman), which was placed

inside a 1 ml tuberculin syringe (Becton, Dickinson and Company). A charcoal-

filtered airflow (35 ml s21) was used to deliver odours to the preparation through

a 10 ml serological pipette that was trimmed to remove the tapered tip, and the

cut end positioned 15 mm away from the preparation. Half this airflow was

diverted through the odour syringe during odour stimulation periods (1 s)

under the control of the Syntech CS-55 Stimulus controller. cVA (purity

,99%) was obtained from Pherobank. Other odorants were obtained from

Sigma-Aldrich at high purity. Chemical Abstracts Service (CAS) numbers: ethyl

butyrate (105-54-4), methyl butyrate (623-42-7), pentyl acetate (628-63-7),

methyl hexanoate (106-70-7), ethyl hexanoate (123-66-0), methyl octanoate

(111-11-5), geranyl acetate (105-87-3), (Z)-11-hexadecenal (53939-28-9).

Odorants were diluted to 10% in paraffin oil, except cVA, which was used at a

range of dilutions (as indicated in the figures), methyl hexanoate and ethyl

hexanoate, which were used at 1%, and (Z)-11-hexadecenal, which was used

at 100%. Trichoid sensilla innervated by OR67d neurons are proximally distrib-

uted on the antenna and can be unambiguously identified by extracellular elec-

trophysiological recordings of individual sensilla because they are unique in

housing only a single OSN. We found that the onset of cVA responses varied

slightly (usually ,200 ms) between animals of the same genotype recorded on

different days, most probably owing to small variations in the position of the

odour delivery apparatus relative to the preparation. For quantification of res-

ponses, we therefore determined the time of onset of the response of a control

wild-type sensillum to 100% cVA for each recording session. Corrected res-

ponses for all recordings in the same session were quantified by counting spikes

in a 0.5 s window from this time point, subtracting the number of spontaneous

spikes in a 0.5 s window before stimulation, and doubling the result to obtain

spikes s21. Spontaneous activity was quantified by counting the spikes in a 5 s

window without stimulus, and dividing by 5 to obtain spikes s21. Peristimulus

time histograms (PSTHs) were generated by counting the numbers of spikes in

0.5 s bins from 2 s before 7 s after odour stimulation for each trial, using custom

software written by M. Ditzen in IDL. These values were then averaged across all

trials. After verifying that responses were normally distributed, we compared all

genotypes for a given experiment by ANOVA, with genotype as the main effect,

and adjusted the alpha level for planned post-hoc means comparisons.
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